Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
J Orthop Res ; 42(2): 259-266, 2024 02.
Article in English | MEDLINE | ID: mdl-37756152

ABSTRACT

Failure of healing after rotator cuff repair (RCR) is common. The purpose of the current study was to evaluate the effect of systemic estrogen or testosterone supplementation on tendon healing after RCR. Seventy-two adult male mice were utilized for all experiments. The supraspinatus tendon was transected and repaired with 6-0 Prolene suture on the left shoulder of 51 animals. Mice were segregated into three groups postoperative: (1) vehicle group (VG; n = 18), (2) estrogen group (EST; n = 17), and (3) testosterone group (TST; n = 16). An unrepaired control group (unrepaired, n = 21) did not have surgery. Utilizing these animals, histological analysis, activity testing, biomechanical testing and RNA sequencing (RNA-seq) was performed. At 8 weeks post-RCR, TST, and EST supplementation improved the overall histologic structure of the repaired enthesis site. No differences in ultimate failure loads or stiffness were detected between VG, EST, and TST groups after biomechanical testing. RCR caused a reduction in wheel activity compared to unrepaired controls and supplementation with TST restored wheel activity. RNA-seq analysis indicated that estrogen and testosterone regulated different pathways associated with enthesis healing, including a suppression of inflammatory signaling. Supplementation with sex hormones improved the structure of the repaired tendon enthesis and significantly regulated expression of diverse pathways regulating multiple biological processes. Testosterone administration following RCR restored wheel activity without having a detrimental impact on biomechanical strength. Future human studies of sex hormone supplementation after RCR are warranted as supplementation in an animal model may improve tendon enthesis healing.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Humans , Male , Mice , Animals , Rotator Cuff/pathology , Rotator Cuff Injuries/drug therapy , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Testosterone/pharmacology , Testosterone/therapeutic use , Tendons/surgery , Estrogens/therapeutic use , Estrogens/pharmacology , Dietary Supplements , Biomechanical Phenomena
2.
Ann Rheum Dis ; 82(6): 873-880, 2023 06.
Article in English | MEDLINE | ID: mdl-36931692

ABSTRACT

OBJECTIVES: Erosive hand osteoarthritis (EHOA) is a severe subset of hand osteoarthritis (OA). It is unclear if EHOA is genetically different from other forms of OA. Sequence variants at ten loci have been associated with hand OA but none with EHOA. METHODS: We performed meta-analysis of EHOA in 1484 cases and 550 680 controls, from 5 populations. To identify causal genes, we performed eQTL and plasma pQTL analyses, and developed one zebrafish mutant. We analysed associations of variants with other traits and estimated shared genetics between EHOA and other traits. RESULTS: Four common sequence variants associated with EHOA, all with relatively high effect. Rs17013495 (SPP1/MEPE, OR=1.40, p=8.4×10-14) and rs11243284 (6p24.3, OR=1.35, p=4.2×10-11) have not been associated with OA, whereas rs11631127 (ALDH1A2, OR=1.46, p=7.1×10-18), and rs1800801 (MGP, OR=1.37, p=3.6×10-13) have previously been associated with hand OA. The association of rs1800801 (MGP) was consistent with a recessive mode of inheritance in contrast to its additive association with hand OA (OR homozygotes vs non-carriers=2.01, 95% CI 1.71 to 2.37). All four variants associated nominally with finger OA, although with substantially lower effect. We found shared genetic components between EHOA and other OA measures, grip strength, urate levels and gout, but not rheumatoid arthritis. We identified ALDH1A2, MGP and BMP6 as causal genes for EHOA, with loss-of-function Bmp6 zebrafish mutants displaying EHOA-like phenotypes. CONCLUSIONS: We report on significant genetic associations with EHOA. The results support the view of EHOA as a form of severe hand OA and partly separate it from OA in larger joints.


Subject(s)
Arthritis, Rheumatoid , Hand Joints , Osteoarthritis , Animals , Hand Joints/diagnostic imaging , Zebrafish/genetics , Hand , Osteoarthritis/complications , Arthritis, Rheumatoid/complications
4.
Foot Ankle Orthop ; 7(4): 24730114221127011, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36262469

ABSTRACT

This first of a 2-part series of articles recounts the key points presented in a collaborative symposium sponsored jointly by the Arthritis Foundation and the American Orthopaedic Foot & Ankle Society with the intent to survey the state of scientific knowledge related to incidence, diagnosis, pathologic mechanisms, and injection treatment options for osteoarthritis (OA) of the foot and ankle. A meeting was held virtually on December 3, 2021. A group of experts were invited to present brief synopses of the current state of knowledge and research in this area. Part 1 overviews areas of epidemiology and pathophysiology, current approaches in imaging, diagnostic and therapeutic injections, and genetics. Opportunities for future research are discussed. The OA scientific community, including funding agencies, academia, industry, and regulatory agencies, must recognize the needs of patients that suffer from arthritis of foot and ankle. The foot and ankle contain a myriad of interrelated joints and tissues that together provide a critical functionality. When this functionality is compromised by OA, significant disability results, yet the foot and ankle are generally understudied by the research community. Level of Evidence: Level V - Review Article/Expert Opinion.

5.
Foot Ankle Orthop ; 7(4): 24730114221127013, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36262470

ABSTRACT

This second of a 2-part series of articles recounts the key points presented in a collaborative symposium sponsored jointly by the Arthritis Foundation and the American Orthopaedic Foot & Ankle Society with the intent to survey current treatment options for osteoarthritis (OA) of the foot and ankle. A meeting was held virtually on December 10, 2021. A group of experts were invited to present brief synopses of the current state of knowledge and research in this area. Topics were chosen by meeting organizers, who then identified and invited the expert speakers. Part 2 overviews the current treatment options, including orthotics, non-joint destructive procedures, as well as arthroscopies and arthroplasties in ankles and feet. Opportunities for future research are also discussed, such as developments in surgical options for ankle and the first metatarsophalangeal joint. The OA scientific community, including funding agencies, academia, industry, and regulatory agencies, must recognize the importance to patients of addressing the foot and ankle with improved basic, translational, and clinical research. Level of Evidence: Level V, review article/expert opinion.

6.
J Hand Surg Am ; 47(10): 923-933, 2022 10.
Article in English | MEDLINE | ID: mdl-36184273

ABSTRACT

PURPOSE: Our goals were to identify individuals who required surgery for thumb carpometacarpal (CMC) joint osteoarthritis (OA), determine if CMC joint OA clusters in families, define the magnitude of familial risk of CMC joint OA, identify risk factors associated with CMC joint OA, and identify rare genetic variants that segregate with familial CMC joint OA. METHODS: We searched the Utah Population Database to identify a cohort of CMC joint OA patients who required surgery. Affected individuals were mapped to pedigrees to identify high-risk families with excess clustering of CMC joint OA. Cox regression models were used to calculate familial risk of CMC joint OA in related individuals. Risk factors were evaluated using logistic regression models. Whole exome sequencing was used to identify rare coding variants associated with familial CMC joint OA. RESULTS: We identified 550 pedigrees with excess clustering of severe CMC joint OA. The relative risk of CMC joint OA requiring surgical treatment was elevated significantly in first- and third-degree relatives of affected individuals, and significant associations with advanced age, female sex, obesity, and tobacco use were observed. We discovered candidate genes that dominantly segregate with severe CMC joint OA in 4 independent families, including a rare variant in Chondroitin Sulfate Synthase 3 (CHSY3). CONCLUSIONS: Familial clustering of severe CMC joint OA was observed in a statewide population. Our data indicate that genetic and environmental factors contribute to the disease process, further highlighting the multifactorial nature of the disease. Genomic analyses suggest distinct biological processes are involved in CMC joint OA pathogenesis. CLINICAL RELEVANCE: Awareness of associated comorbidities may guide the diagnosis of CMC joint OA in at-risk populations and help identify individuals who may not do well with nonoperative treatment. Further pursuit of the genes associated with severe CMC joint OA may lead to assays for detection of early stages of disease and have therapeutic potential.


Subject(s)
Carpometacarpal Joints , Osteoarthritis , Carpometacarpal Joints/surgery , Chondroitin Sulfates , Cluster Analysis , Female , Genetic Predisposition to Disease , Humans , Osteoarthritis/epidemiology , Thumb
7.
Ann Rheum Dis ; 81(10): 1465-1473, 2022 10.
Article in English | MEDLINE | ID: mdl-35732460

ABSTRACT

OBJECTIVES: How inflammatory signalling contributes to osteoarthritis (OA) susceptibility is undetermined. An allele encoding a hyperactive form of the Receptor Interacting Protein Kinase 2 (RIPK2) proinflammatory signalling intermediate has been associated with familial OA. To test whether altered nucleotide-binding oligomerisation domain (NOD)/RIPK2 pathway activity causes heightened OA susceptibility, we investigated whether variants affecting additional pathway components are associated with familial OA. To determine whether the Ripk2104Asp disease allele is sufficient to account for the familial phenotype, we determined the effect of the allele on mice. METHODS: Genomic analysis of 150 independent families with dominant inheritance of OA affecting diverse joints was used to identify coding variants that segregated strictly with occurrence of OA. Genome editing was used to introduce the OA-associated RIPK2 (p.Asn104Asp) allele into the genome of inbred mice. The consequences of the Ripk2104Asp disease allele on physiology and OA susceptibility in mice were measured by histology, immunohistochemistry, serum cytokine levels and gene expression. RESULTS: We identified six novel variants affecting components of the NOD/RIPK2 inflammatory signalling pathway that are associated with familial OA affecting the hand, shoulder or foot. The Ripk2104Asp allele acts dominantly to alter basal physiology and response to trauma in the mouse knee. Whereas the knees of uninjured Ripk2Asp104 mice appear normal histologically, the joints exhibit a set of marked gene expression changes reminiscent of overt OA. Although the Ripk2104Asp mice lack evidence of chronically elevated systemic inflammation, they do exhibit significantly increased susceptibility to post-traumatic OA (PTOA). CONCLUSIONS: Two types of data support the hypothesis that altered NOD/RIPK2 signalling confers susceptibility to OA.


Subject(s)
Osteoarthritis , Alleles , Animals , Cytokines/metabolism , Inflammation/genetics , Mice , Osteoarthritis/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction/genetics
8.
Arthrosc Tech ; 10(8): e1949-e1954, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34401238

ABSTRACT

To improve understanding of the pathophysiology of rotator cuff repair and develop therapeutic treatments an animal model is essential. This Technical Note describes a comprehensive step-by-step description of rotator cuff repair in the mouse. This technique is particularly beneficial because the murine rotator cuff is anatomically similar to that of humans. The mouse model can also be used to test the biological role of candidate genes during repair and be used to identify drugs that accelerate the healing process.

9.
J Orthop Res ; 39(12): 2711-2724, 2021 12.
Article in English | MEDLINE | ID: mdl-33533088

ABSTRACT

Estrogen deficiency has been shown to negatively influence rotator cuff tendon healing. Therefore, the addition of an estrogen-like-compound (ELC) in a nonestrogen-deficient animal may improve the quality of a rotator cuff repair. The purpose of this study was to evaluate the effects of an ELC, diethylstilbestrol (DES), on tendon healing in a murine rotator cuff repair model. Thirty-three male wild-type mice (C57BL/6NJ) were randomly divided into three study groups. Group 1-unoperated mice with normal rotator cuff tendons. Groups 2 and 3 consisted of surgically repaired rotator cuff tendons; Group 2 (repair-only) was the standard repair group (no DES injected), whereas Group 3 (repair + DES) was the experimental repair group (injected with DES). Comparing the maximal thickness of calcified fibrocartilage to uncalcified fibrocartilage, the ratios for the control (intact tendon), repair-only, and repair + DES groups were 2:1, 0.9:1, and 1.7:1. RNA expression data demonstrated upregulation of chondrogenic, angiogenic, and tendon modulation genes in the repair- only group compared to the control (intact tendon) group (p < 0.04 for all), and that addition of DES further increased the osteogenic, angiogenic, and tendon modulation gene expression compared to the repair-only group (p < 0.02). Immunohistochemical analysis indicated that the addition of DES further increased osteogenic, angiogenic, and tendon maturation protein expression at the enthesis compared to standard repairs.


Subject(s)
Rotator Cuff Injuries , Rotator Cuff , Animals , Biomechanical Phenomena , Disease Models, Animal , Estrogens/pharmacology , Estrogens/therapeutic use , Male , Mice , Mice, Inbred C57BL , Rotator Cuff/surgery , Rotator Cuff Injuries/drug therapy , Rotator Cuff Injuries/surgery , Tendons/surgery , Wound Healing
10.
Arthritis Rheumatol ; 73(3): 440-447, 2021 03.
Article in English | MEDLINE | ID: mdl-32940959

ABSTRACT

OBJECTIVE: Erosive hand osteoarthritis (OA) is a severe and rapidly progressing subset of hand OA. Its etiology remains largely unknown, which has hindered development of successful treatments. This study was undertaken to test the hypothesis that erosive hand OA demonstrates familial clustering in a large statewide population linked to genealogical records, and to determine the association of potential risk factors with erosive hand OA. METHODS: Patients diagnosed as having erosive hand OA were identified by searching 4,741,840 unique medical records from a comprehensive statewide database, the Utah Population Database (UPDB). Affected individuals were mapped to pedigrees to identify high-risk families with excess clustering of erosive hand OA as defined by a familial standardized incidence ratio (FSIR) of ≥2.0. The magnitude of familial risk of erosive hand OA in related individuals was calculated using Cox regression models. Association of potential erosive hand OA risk factors was analyzed using multivariate conditional logistic regression and logistic regression models. RESULTS: We identified 703 affected individuals linked to 240 unrelated high-risk pedigrees with excess clustering of erosive hand OA (FSIR ≥2.0, P < 0.05). The relative risk of developing erosive hand OA was significantly elevated in first-degree relatives (P < 0.001). There were significant associations between a diagnosis of erosive hand OA and age, sex, diabetes, and obesity (all P < 0.05). CONCLUSION: Familial clustering of erosive hand OA observed in a statewide database indicates a potential genetic contribution to the etiology of the disease. Age, sex, diabetes, and obesity are risk factors for erosive hand OA. Identification of causal gene variants in these high-risk families may provide insight into the genes and pathways that contribute to erosive hand OA onset and progression.


Subject(s)
Hand Joints/diagnostic imaging , Osteoarthritis/genetics , Pedigree , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cluster Analysis , Cohort Studies , Databases, Factual , Female , Finger Joint/diagnostic imaging , Finger Joint/pathology , Hand Joints/pathology , Humans , Incidence , Male , Middle Aged , Osteoarthritis/diagnostic imaging , Osteoarthritis/epidemiology , Osteoarthritis/pathology , Proportional Hazards Models , Risk Factors , Utah/epidemiology , Young Adult
11.
Ann Hum Genet ; 85(2): 58-72, 2021 03.
Article in English | MEDLINE | ID: mdl-33026655

ABSTRACT

Osteoporosis is a common skeletal disorder characterized by deterioration of bone tissue. The set of genetic factors contributing to osteoporosis is not completely specified. High-risk osteoporosis pedigrees were analyzed to identify genes that may confer susceptibility to disease. Candidate predisposition variants were identified initially by whole exome sequencing of affected-relative pairs, approximately cousins, from 10 pedigrees. Variants were filtered on the basis of population frequency, concordance between pairs of cousins, affecting a gene associated with osteoporosis, and likelihood to have functionally damaging, pathogenic consequences. Subsequently, variants were tested for segregation in 68 additional relatives of the index carriers. A rare variant in MEGF6 (rs755467862) showed strong evidence of segregation with the disease phenotype. Predicted protein folding indicated the variant (Cys200Tyr) may disrupt structure of an EGF-like calcium-binding domain of MEGF6. Functional analyses demonstrated that complete loss of the paralogous genes megf6a and megf6b in zebrafish resulted in significant delay of cartilage and bone formation. Segregation analyses, in silico protein structure modeling, and functional assays support a role for MEGF6 in predisposition to osteoporosis.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Intercellular Signaling Peptides and Proteins/genetics , Osteoporosis/genetics , Aged , Aged, 80 and over , Animals , Female , Heterozygote , Humans , Male , Middle Aged , Osteoporosis/pathology , Pedigree , Phenotype , Polymorphism, Single Nucleotide/genetics , Exome Sequencing , Zebrafish
12.
J Hand Surg Am ; 45(1): 1-8.e1, 2020 01.
Article in English | MEDLINE | ID: mdl-31761504

ABSTRACT

PURPOSE: Kienböck disease (KD) is rare and its etiology remains unknown. As a result, the ideal treatment is also in question. Our primary purpose was to test the hypothesis that KD would demonstrate familial clustering in a large statewide population with comprehensive genealogical records, possibly suggesting a genetic etiologic contribution. Our secondary purpose was to evaluate for associations between KD and known risk factors for avascular necrosis. METHODS: Patients diagnosed with KD were identified by searching medical records from a comprehensive statewide database, the Utah Population Database. This database contains pedigrees dating back to the early 1800s, which are linked to 31 million medical records for 11 million patients from 1996 to the present. Affected individuals were then mapped to pedigrees to identify high-risk families with an increased incidence of KD relative to control pedigrees. The magnitude of familial risk of KD in related individuals was calculated using Cox regression models. Association of risk factors related to KD was analyzed using conditional logistic regression. RESULTS: We identified 394 affected individuals linked to 194 unrelated high-risk pedigrees with increased incidence of KD. The relative risk of developing KD was significantly elevated in first-degree relatives. There was a significant correlation between alcohol, glucocorticoid, and tobacco use and a history of diabetes, and the diagnosis of KD. CONCLUSIONS: Familial clustering of KD observed in the Utah Population Database cohort indicates a potential genetic contribution to the etiology of the disease. Identification of causal gene variants in these high-risk families may provide insight into the genes and pathways that contribute to the onset and progression of KD. CLINICAL RELEVANCE: This study suggests that there is a potential genetic contribution to the etiology of KD and that the disease has a significant association with several risk factors.


Subject(s)
Genetic Predisposition to Disease , Osteonecrosis , Cluster Analysis , Cohort Studies , Humans , Osteonecrosis/epidemiology , Osteonecrosis/genetics , Risk Factors , Utah/epidemiology
13.
Development ; 146(24)2019 12 16.
Article in English | MEDLINE | ID: mdl-31784460

ABSTRACT

Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.


Subject(s)
Cell Lineage/genetics , Multipotent Stem Cells/physiology , Neural Crest/cytology , Neural Stem Cells/physiology , Nuclear Proteins/physiology , Positive Transcriptional Elongation Factor B/physiology , Transcription Factors/physiology , Zebrafish Proteins/physiology , Animals , Animals, Genetically Modified , Body Patterning/genetics , Cell Differentiation/genetics , Cyclin-Dependent Kinase 9/genetics , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Multipotent Stem Cells/cytology , Multiprotein Complexes/genetics , Multiprotein Complexes/physiology , Neural Crest/physiology , Neural Stem Cells/cytology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Positive Transcriptional Elongation Factor B/antagonists & inhibitors , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , Transcription Factors/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
14.
Dev Cell ; 51(5): 645-657.e4, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31708433

ABSTRACT

Inconsistent activity limits the use of CRISPR-Cas9 in zebrafish. We show supernumerary guanine nucleotides at the 5' ends of single guide RNAs (sgRNAs) account for diminished CRISPR-Cas9 activity in zebrafish embryos. Genomic sequences can be targeted consistently with extremely high efficiency using Cas9 ribonucleoproteins (RNPs) containing either a sgRNA molecule or a synthetic crRNA:tracrRNA duplex that perfectly matches the protospacer target site. Following injection of zebrafish eggs with such RNPs, virtually every copy of a targeted locus harbors an induced indel mutation. Loss of gene function is often complete, as F0 embryos closely resemble true null mutants without detectable non-specific effects. Mosaicism is sufficiently low in F0 embryos that cell non-autonomous gene functions can be probed effectively and redundant activities of genes can be uncovered when two genes are targeted simultaneously. Finally, heritable deletion mutations of at least 50 kbp can be readily induced using pairs of duplex guide RNPs targeted to a single chromosome.


Subject(s)
CRISPR-Cas Systems , Gene Deletion , Gene Editing/methods , Zebrafish/genetics , Animals , Embryo, Nonmammalian/metabolism , Loss of Function Mutation
16.
Dev Cell ; 45(4): 512-525.e5, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29754802

ABSTRACT

Graded Shh signaling across fields of precursor cells coordinates patterns of gene expression, differentiation, and morphogenetic behavior as precursors form complex structures, such as the nervous system, the limbs, and craniofacial skeleton. Here we discover that intracellular calcium mobilization, a process tightly controlled and readily modulated, regulates the level of Shh-dependent gene expression in responding cells and affects the development of all Shh-dependent cell types in the zebrafish embryo. Reduced expression or modified activity of ryanodine receptor (RyR) intracellular calcium release channels shifted the allocation of Shh-dependent cell fates in the somitic muscle and neural tube. Mosaic analysis revealed that RyR-mediated calcium mobilization is required specifically in Shh ligand-receiving cells. This work reveals that RyR channels participate in intercellular signal transduction events. As modulation of RyR activity modifies tissue patterning, we hypothesize that alterations in intracellular calcium mobilization contribute to both birth defects and evolutionary modifications of morphology.


Subject(s)
Calcium/metabolism , Embryo, Nonmammalian/physiology , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Signal Transduction , Somites/metabolism , Zebrafish/physiology , Animals , Body Patterning , Embryo, Nonmammalian/cytology , Hedgehog Proteins/genetics , Morphogenesis , Muscles/cytology , Muscles/metabolism , Neural Tube/cytology , Neural Tube/metabolism , Somites/cytology , Zebrafish/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
17.
Hum Mol Genet ; 27(13): 2383-2391, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29659823

ABSTRACT

Osteoarthritis (OA) is a common debilitating disease characterized by abnormal remodeling of the cartilage and bone of the articular joint. Ameliorating therapeutics are lacking due to limited understanding of the molecular pathways affecting disease initiation and progression. Notably, although a link between inflammation and overt OA is well established, the role of inflammation as a driver of disease occurrence is highly disputed. We analyzed a family with dominant inheritance of early-onset OA and found that affected individuals harbored a rare variant allele encoding a significant amino acid change (p.Asn104Asp) in the kinase domain of receptor interacting protein kinase 2 (RIPK2), which transduces signals from activated bacterial peptidoglycan sensors through the NF-κB pathway to generate a proinflammatory immune response. Functional analyses of RIPK2 activity in zebrafish embryos indicated that the variant RIPK2104Asp protein is hyperactive in its signaling capacity, with augmented ability to activate the innate immune response and the NF-κB pathway and to promote upregulation of OA-associated genes. Further we show a second allele of RIPK2 linked to an inflammatory disease associated with arthritis also has enhanced activity stimulating the NF-κB pathway. Our studies reveal for the first time the inflammatory response can function as a gatekeeper risk factor for OA.


Subject(s)
Inflammation/genetics , Osteoarthritis/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Zebrafish Proteins/genetics , Adult , Age of Onset , Alleles , Amino Acid Substitution , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Female , Humans , Inflammation/pathology , Male , NF-kappa B/genetics , Osteoarthritis/pathology , Transcription Factor RelA/genetics , Exome Sequencing , Zebrafish/genetics , Zebrafish/growth & development
18.
Dev Cell ; 36(6): 654-67, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27003937

ABSTRACT

We present simple and efficient methods for creating heritable modifications of the zebrafish genome. Precisely modified alleles are generated by homologous recombination between the host genome and dsDNA donor molecules, stimulated by the induction of chromosomally targeted double-strand breaks. Several kilobase-long tracts of genome sequence can be replaced. Tagging donor sequences with reporter genes that can be subsequently excised improves recovery of edited alleles by an order of magnitude and facilitates recovery of recessive and phenotypically silent conditional mutations. We generate and demonstrate functionality of (1) alleles with a single codon change, (2) an allele encoding an epitope-tagged version of an endogenous protein, (3) alleles expressing reporter proteins, and (4) a conditional allele in which an exon is flanked by recombinogenic loxP sites. Our methods make recovery of a broad range of genome editing events very practicable, significantly advancing applicability of the zebrafish for studying normal biological processes and modeling diseases.


Subject(s)
Genetic Engineering/methods , Zebrafish/genetics , Animals , Animals, Genetically Modified , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, Reporter , Genome , Homologous Recombination , Models, Animal , Models, Genetic , RNA Editing , Zebrafish/abnormalities , Zebrafish/embryology
19.
PLoS Genet ; 8(8): e1002861, 2012.
Article in English | MEDLINE | ID: mdl-22916025

ABSTRACT

The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish. Briefly, double-strand DNA breaks are induced at a locus of interest by synthetic nucleases, called TALENs. Subsequent host repair of the DNA lesions leads to the generation of insertion and deletion mutations at the targeted locus. To detect the induced DNA sequence alterations at targeted loci, genomes are examined using High Resolution Melt Analysis, an efficient and sensitive method for detecting the presence of newly arising sequence polymorphisms. As the DNA binding specificity of a TALEN is determined by a custom designed array of DNA recognition modules, each of which interacts with a single target nucleotide, TALENs with very high target sequence specificities can be easily generated. Using freely accessible reagents and Web-based software, and a very simple cloning strategy, a TALEN that uniquely recognizes a specific pre-determined locus in the zebrafish genome can be generated within days. Here we develop and test the activity of four TALENs directed at different target genes. Using the experimental approach described here, every embryo injected with RNA encoding a TALEN will acquire targeted mutations. Multiple independently arising mutations are produced in each growing embryo, and up to 50% of the host genomes may acquire a targeted mutation. Upon reaching adulthood, approximately 90% of these animals transmit targeted mutations to their progeny. Results presented here indicate the TALENs are highly sequence-specific and produce minimal off-target effects. In all, it takes about two weeks to create a target-specific TALEN and generate growing embryos that harbor an array of germ line mutations at a pre-specified locus.


Subject(s)
Endonucleases/genetics , Gene Targeting/methods , Mutagenesis, Site-Directed/methods , Software , Zebrafish/genetics , Animals , Base Sequence , Binding Sites , Cloning, Molecular , DNA Breaks, Double-Stranded , Embryo, Nonmammalian , Endonucleases/biosynthesis , Genetic Loci , Germ-Line Mutation , Microinjections , Molecular Sequence Data , Nucleic Acid Denaturation , Polymorphism, Genetic , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Zebrafish/embryology
20.
Dis Model Mech ; 4(5): 607-21, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21628396

ABSTRACT

The vertebrate heart is one of the first organs to form, and its early function and morphogenesis are crucial for continued embryonic development. Here we analyze the effects of loss of Heart adaptor protein 1 (Hadp1), which we show is required for normal function and morphogenesis of the embryonic zebrafish heart. Hadp1 is a pleckstrin homology (PH)-domain-containing protein whose expression is enriched in embryonic cardiomyocytes. Knockdown of hadp1 in zebrafish embryos reduced cardiac contractility and altered late myocyte differentiation. By using optical mapping and submaximal levels of hadp1 knockdown, we observed profound effects on Ca(2+) handling and on action potential duration in the absence of morphological defects, suggesting that Hadp1 plays a major role in the regulation of intracellular Ca(2+) handling in the heart. Hadp1 interacts with phosphatidylinositol 4-phosphate [PI4P; also known as PtdIns(4)P] derivatives via its PH domain, and its subcellular localization is dependent upon this motif. Pharmacological blockade of the synthesis of PI4P derivatives in vivo phenocopied the loss of hadp1 in zebrafish. Collectively, these results demonstrate that hadp1 is required for normal cardiac function and morphogenesis during embryogenesis, and suggest that hadp1 modulates Ca(2+) handling in the heart through its interaction with phosphatidylinositols.


Subject(s)
Muscle Proteins/chemistry , Muscle Proteins/metabolism , Myocardial Contraction/physiology , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism , Zebrafish/metabolism , 1-Phosphatidylinositol 4-Kinase/metabolism , Animals , Body Patterning , Bradycardia/embryology , Bradycardia/physiopathology , Calcium Signaling , Cardiac Output , Cell Count , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/pathology , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , HEK293 Cells , Heart/embryology , Heart/physiology , Humans , Muscle Proteins/deficiency , Muscle Proteins/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Organogenesis , Protein Binding , Protein Structure, Tertiary , Subcellular Fractions/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...